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PREFACE 

The material contained i n  this r epor t  comprises the  d i s -  

s e r t a t i o n  e n t i t l e d  "The Temperature Dependence of t he  X-Ray Debye 

Temperature and i t s  Re la t ion  to  the Elast ic  Constant Debye 

Temperature i n  Nickel arid Iron-Kickel Alloys, ' I  presented by 

Ronalc T i .  Wilson i n  p a r t i a l  f u l f i l l m e n t  of t he  requirements f o r  

t n e  degree of "Doctor of Philosophy" a t  Rensselaer Polytechnic 

I n s t i t u t e .  T h i s  degree will .  be conferred i n  June 1964. 
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ABSTRACT 

A method f o r  measuring the  i n t e g r a t e d  i n t e n s i t y  of Bragg 

peaks r e f l e c t e d  from the  f ace  of a l a r g e  s i n g l e  c r y s t a l  mounted on 

a G.  E. gonios ta t  a t  temperatures from 100°K t o  600°K i s  des- 

c r ibed .  I n  add i t ion ,  an expression f o r  c o r r e c t i n g  these  in- 

t e n s i t i e s  f o r  d i f f u s e  s c a t t e r i n g  is presented. 

The method has  been used on samples of pure n i cke l  and 

a l l o y s  of 29, 31, and 33 percent  n i cke l  i n  i ron .  X-ray Debye 

temperatures are ca l cu la t ed  from the  temperature v a r i a t i g n  of t h e  

Debye-Waller f a c t o r .  The temperature dependence of these  Debye 

temperatures i s  compared with the temperature dependence of t he  

Debye temperature ca l cu la t ed  from t h e  u l t r a s o n i c  e l a s t i c  cons tan t  

measurements of Alers, Neighbors and Sa to  (J. Phys. Chem. So l ids ,  

- 13, 40, 1960). 

It i s  argued t h a t  the  temperature v a r i a t i o n  of the  two 

Debye temperatures should agree unless  t he re  are con t r ibu t ions  t o  

t h e  u l t r a s o n i c  e l a s t i c  cons tan ts  which do n o t  e f f e c t  t he  thermal 

v i b r a t i o n s  measured by t h e  

Agreement i s  found 

case of n i c k e l  i n  s p i t e  of 

-- 

x-ray techniques.  

f o r  the temperature dependence i n  t h e  

t h e  f a c t  t h a t  the  s i z e  of t he  Debye 

temperature from the  u l t r a s o n i c  d a t a  i s  478°K a t  room temperature 

compared wi th  412'K obtained i n  t h i s  work. 

(Simerska, Czech. J. Phys., l2, 858, 1962) have given about 405°K. 

This  agreement se rves  as a check on our  method. 

Other x-ray methods 

For the  a l l o y s  the  Debye temperatures ca l cu la t ed  from the  

v i  



u l t r a s o n i c  measurements of Alers  e t  a l .  give a change i n  s lope  

from p o s i t i v e  t o  nega t ive  i n  the  Debye temperature versus temperature 

curve as one goes from below the  C u r i e  temperature t o  above i t .  Our 

x-ray measurements do n o t  show t h i s  l a rge  change i n  s lope .  A 

much smaller change i n  s lope  i s  observed. 

It i s  concluded t h a t  t he  in te ra tomic  magnetic exchange 

energy, J, does not  a f f e c t  the  e l a s t i c  p rope r t i e s  of these  a l l o y s  

a t  t he  f requencies  of the  thermal waves important i n  t h e  x-ray 

measurements. Such an energy term was introduced by Alers  e t  a l .  

t o  exp la in  t h e i r  u l t r a s o n i c  measurements. This con t r ibu t ion  seems 

necessary t o  expla in  the  d i f f e rence  between the  shear  cons tan ts  

i n  the  u l t r a s o n i c  measurements. Therefore,  i t  i s  proposed t h a t  

t he  e f f e c t i v e  J value i n  the  u l t r a s o n i c  measurements i s  a s p a t i a l  

average of the  magnetic exchange energy over t he  wavelength of t he  

u l t r a s o n i c  waves; however, f o r  the s h o r t  wavelengths important i n  

t h e  x-ray measurements t h i s  averaging does no t  smooth out  the  e f -  

f e c t s  of d i so rde r  i n  the  a l l o y s .  Thus, t he  magnetic e f f e c t  i s  no t  

seen i n  the  x-ray measurements. 

v i i  



ACKNOWLEDGEMENTS 

It is  a p l easu re  t o  acknowledge the advice and encouragement 

of my adv i se r  P ro fes so r  J. L. Katz and of J. S. K o w e l ,  J. S. Kasper 

and R.  W. Hardt of t h e  General E l e c t r i c  Company. The comments from 

my graduate committee on the  manuscript were appreciated.  

I n  a d d i t i o n  I would l i k e  t o  thank P ro fes so r  Childs and 

James Frawley of t h e  Metallurgy Department f o r  supplying the  n i c k e l  

sample and assistance i n  some of the sample preparat ion.  

v i i i  



1 

i 

SECTION I 

INTRODUCTION AND HISTORICAL REVIEW 

The concept of a temperature r e l a t e d  t o  the  maximum frequency 

of l a t t i ce  v i b r a t i o n s  i n  a c r y s t a l i n e  s o l i d  was introduced by Debye 

(1912) i n  h i s  work on s p e c i f i c  h e a t s .  This temperature, known as t h e  

Debye temperature, i s  considered t o  be c h a r a c t e r i s t i c  of a s o l i d  and 

i s  a measure of what can be consfdered as a high temperature f o r  a 

given material, I n  h i s  model Debye assumed the material t o  be both 

continuous and i s o t r o p i c  and t h a t  t h e  v e l o c i t y  of t he  thermal vi- 

b r a t i o n a l  waves i s  independent of wavelength, The atomic n a t u r e  of 

the c r y s t a l  was introduced by l i m i t i n g  the  t o t a l  number of v i b r a t i o n a l  

modes t o  t h r e e  times t h e  number of a toms i n  the  c r y s t a l .  

Born and von Karman (1912) attacked the  problem of determining 

t h e  v i b r a t i o n a l  modes i n  a c r y s t a l  d i r e c t l y ,  Subsequent workers 

have made g r e a t  progress  i n  c a l c u l a t i n g  t h e  v i b r a t i o n a l  s p e c t r a  of 

c r y s t a l s  (Blackman, 1955; de Launay, 19561, Experimental methods 

f o r  determining v i b r a t i o n a l  s p e c t r a  using x-ray and neutron sca t -  

t e r i n g  techniques have been developed and used on a l imi t ed  number 

of materials (See a summary i n  Maradudfn, Montrol and Weiss, 1963, 

Sec t ion  VII), 

u n c e r t a i n t i e s ,  However, t hese  experimental and t h e o r e t i c a l  re- 

s u l t s  do show t h a t  t he  Debye model does n o t  give a good approx- 

imation t o  t h e  t r u e  v i b r a t i o n a l  spec t r a ,  

These methods are d i f f i c u l t  and are complicated by 

Although i t  i s  t r u e  t h a t  the Debyemodel i s  no t  a good re- 

p r e s e n t a t i o n  of t he  c r y s t a l ,  t he  concept of a Debye temperature i s  
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s t i l l  v a l i d  and u s e f u l ,  

can be introduced i n t o  theory through t h e  simple Debye model and 

l a t e r  can be evaluated as an experimental parameter which r ep resen t s  

an average over t h e  t r u e  v i b r a t i o n a l  spectrum, Such experimental  

Debye temperatures,  t h e i r  method of measurement, and t h e i r  theor- 

e t ica l  r e l a t i o n s h f p  have been reviewed r e c e n t l y  by Herbstein (1961). 

This i s  t rue because the  Debye temperature 

One of t hese  experimental  methods involves  t h e  measurement 

These of t h e  i n t e n s f t i e s  of Bragg peaks in t h e  x-ray d i f f r a c t i o n .  

i n t e n s i t i e s  are a t t enua ted  by a f a c t o r  known as the  temperature 

f a c t o r  o r  t he  Debye-Waller f a c t o r a  The expression f o r  t h i s  f a c t o r  

was f i r s t  developed by Debye (19141 s h o r t l y  a f t e r  h i s  work on spe- 

c i f i c  h e a t s ,  It w a s  later corrected by Faxen (1918) and then 

s t a t e d  i n  i t s  p r e s e n t  form by Waller (1923). 

ments were c lassical  b u t  later quantum mechanical t reatments  

(Waller, 1928; O t t ,  1935; Born, 1942 a,b,c) have v e r i f i e d  the cor- 

r e c t n e s s  of t he  c lass ical  t reatments ,  The classical  treatment w i l l  

be discussed i n  s e c t f o n  111. 

These e a r l y  treat- 

The x-ray Debye temperature, @,,, which appears i n  the  

Debye-Waller f a c t o r  i s  introduced through t h e  Debye model. It can 

be c a l c u l a t e d  i n  t h e  Debye approximation wfth a knowledge of t he  

c r y s t a l  l a t t i c e  and t h e  e las t ic  constants  of t h e  c r y s t a l .  The val-  

ue of @, c a l c u l a t e d  from the  e l a s t i c  cons t an t s  w i l l  n o t  neces- 

s a r i l y  agree with t h e  experimental value of mV f o r  several 

reasons.  One reason i s  t h a t  the t r u e  v i b r a t i o n a l  spectrum may 

d i f f e r  s u b s t a n t i a l l y  from the Debye spectrum, Another i s  t h a t  t he  



e l a s t i c  cons tan ts  used i n  the  c a l c u l a t i o n  are usua l ly  obtained by 

methods us ing  f requencies  much lower than the  f requencies  important 

i n  the  thermal v i b r a t i o n s  measured by x-ray techniques.  

On t h e  o t h e r  hand the re  a r e  methods f o r  c a l c u l a t i n g  the  v i -  

b r a t i o n a l  s p e c t r a  from the  interatomic f o r c e s  (Blackman, 1955; 

3 

delaunay, 1956). These a r e  much c lose r  t o  the  t r u e  spectrum than i s  

the  Debye spectrum. However, the  in te ra tomic  fo rces  cannot i n  gen- 

eral be ca l cu la t ed  from f i r s t  p r i n c i p l e s  so  t h a t  i t  i s  necessary t o  

eva lua te  them from e l a s t i c  cons tan t  da ta ,  When t h i s  i s  done t h e r e  

i s  s t i l l  t he  p o s s i b i l i t y  of e r r o r s  due t o  a frequency dependence of 

t he  e l a s t i c  cons tan ts .  For in s t ance  deLaunay (1956) d i s t i n g u i s h e s  

between the  c o n t r i b u t i o n  of t he  e l ec t ron  gas a t  u l t r a s o n i c  f r e -  

quencies and a t  thermal f requencieso  

Thus, t he  experimental  value of @,, can d i f f e r  from t h e  

va lue  c a l c u l a t e d  from e l a s t i c  constants  f o r  reasons o the r  than d i f -  

f e r ences  i n  v i b r a t i o n a l  s p e c t r a o  T h i s  f a c t  can obscure the  i n t e r -  

p r e t a t i o n  proposed by Blackman (1956) by which information about 

t he  v i b r a t i o n a l  spectrum could be obtained from a comparison of t he  

c a l c u l a t e d  and experimental  va lues  of Q 0  

Howevers t h e r e  i s  another  aspect  of x-ray Debye temperature 

measurements which can prove usefu ls  i , e ,  its temperature dependence. 

There i s  of course the  e x p l i c i t  temperature dependence a t  very low 

temperatures  i n  the  range T e t h i s  temperature dependence 

has been t r e a t e d  ex tens ive ly  by Blackman (1955), A t  h igher  temper- 

a t u r e s  t h e  e x p l i c i t  temperature dependence i s  small  (Blackman, 1955; 

@ /12; 
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Kagan and Umanskii, 1962; F l inn  e t  a l , ,  1961). 

There i s  a much l a r g e r  temperature v a r i a t i o n  of t h e  Debye 

temperature which i s  due t o  the  temperature dependence of t h e  i n t e r -  

atomic fo rces .  Zener and Bil insky (1936) and Paskin (1957) have 

presented t h e o r i e s  which re la te  the temperature dependence of t h e  

Debye temperature t o  the  temperature dependence of t h e  l a t t i c e  con- 

s tants ,  i.e. t o  thermal expansion. The dependence p red ic t ed  by 

t h e i r  t h e o r i e s  i s  gene ra l ly  too low (see the r e s u l t s  i n  Herbstein,  

1961), 

Huntington (1958) i t  can be  seen t h a t  t h e  temperature dependence of 

t h e  e las t ic  cons t an t s  cannot be a t t r i b u t e d  e n t i r e l y  t o  thermal ex- 

pans ion 

This is n o t  s u r p r i s i n g  s i n c e  from t h e  d i scuss ion  by 

A more d i r e c t  approach t o  the temperature dependence of t h e  

Debye temperature i s  t o  a t t r i b u t e  i t  t o  the  temperature dependence 

of t h e  e las t ic  cons t an t s  themselves. From the r e s u l t s  i n  Herbstein 

(1961) i t  can be seen t h a t  where good experimental  values  are 

a v a i l a b l e  the  temperature dependence of t h e  Debye temperature can 

u s u a l l y  be a t t r i b u t e d  t o  the  temperature dependence of t h e  elastic 

cons t an t s  even when the  s i z e  of t h e  Debye temperatures obtained 

from t h e  two methods do no t  agree,  

p r i s i n g  if t h e  form of the  v i b r a t i o n a l  spectrum does no t  vary with 

temperature since the  s i z e  of t he  interatomic f o r c e s  which determine 

t h e  v i b r a t i o n  spectrum should have the same temperature dependence 

as t h e  e las t ic  cons t an t s ,  Conversely, dev ia t ions  from t h i s  agree- 

ment could be i n t e r p r e t e d  as f a i l u r e  of one of t he  above condi t ions,  

This agreement is n o t  sur- 
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i .e ,  e i t h e r  t he  form of the  v i b r a t i o n a l  

a t u r e  o r  t he  observed e las t ic  constants  

5 

spectrum changes wi th  temper- 

do no t  have the  same temper- 

a t u r e  dependence as the  e l a s t i c  p rope r t i e s  important  i n  thermal vi-  

b ra t ions .  The p o s s i b i l i t y  of such an i n t e r p r e t a t i o n  makes the  com- 

par i son  of t he  temperature dependence of t hese  ca l cu la t ed  and ex- 

perimental  x-ray Debye temperatures a va luable  procedure.  

A case  where such an i n t e r p r e t a t i o n  can be appl ied  is i n  t h e  

i ron-n icke l  a l l o y  system i n  the  compositions conta in ing  about 30 t o  

45 percent  n i c k e l ,  

t r i b u t i o n  t o  the  e las t ic  cons tan ts  which causes  a l a r g e  change i n  

s lope  of t he  c a l c u l a t e d  a,, versus T curve as the  temperature goes 

from below the  Curie temperature t o  above t h e  Curie temperature of 

t hese  ferromagnet ic  a l l o y s ,  

I n  these  compositions t h e r e  is  a magnetic con- 

I n  Sec t ion  I1 t h e  d e t a i l s  of t h i s  magnetic e f f e c t  w i l l  be 

presented ,  I n  Sec t ion  I11 a development of t he  Debye-Waller f a c t o r  

w i l l  be  given t o  provide the  t h e o r e t i c a l  b a s i s  f o r  t h e  in t e rp re -  

t a t i o n  of the  x-ray measurements. The experimental  procedures f o r  

measuring the  Debye-Waller f a c t o r  w i l l  be descr ibed i n  Sec t ion  I V .  

I n  Sec t ion  V t he  r e s u l t s  of our  measurements on pure n i c k e l  w i l l  

be  compared wi th  previous work a s  a check on our procedures and 

then our  r e s u l t s  f o r  t h r e e  i ron-nickel  a l l o y s  w i l l  be  compared 

with the  r e s u l t s  of u l t r a s o n i c  e l a s t i c  cons t an t  ca l cu la t ions .  Fin- 

a l l y ,  i n  Sec t ion  V I  t he  s ign i f i cance  of t h i s  comparison w i l l  be d i s -  

cus sed 
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SECTION I1 

THE MAGNETIC EFFECT I N  THE ELASTIC 

CONSTANTS OF IRON-NIQ(EL ALLOYS 

The anomalous temperature dependence of t h e  elastic con- 

s t a n t s  of face-centered-cubic i ron-nickel  a l l o y s  i s  well known 

(Guillaume, 1920; Chevenard, 1920; Engler, 1938; Bozorth, 1950, 

p. 684). Above the  Curie temperatures of t hese  ferromagnet ic  ma- 

ter ia l  the  s lopes  of t he  e l a s t i c  constant  versus  temperature curves  

a r e  nega t ive  with a f r a c t i o n a l  change of t he  order  of  IO)-^ per  Co.  

This  is about t he  same a s  f o r  most metals ,  Below the  Curie temper- 

a t u r e s  t h e  s lopes  a r e  very d i f f e r e n t ,  Some of t h i s  behavior  can be  

a t t r i b u t e d  t o  t h e  so-called AE e f f e c t  which de r ives  i t s  name from 

the  observed change i n  Young's modulus, E ,  wfth appl ied magnetic 

f i e l d ,  This e f f e c t  i s  due t o  a s t r e s s  induced change i n  the  d i r e c t i o n  

of magnet izat ion through e i t h e r  domafn r o t a t i o n  o r  domain w a l l  

motion, This e f f e c t  is known t o  re lax  ou t  a t  f requencies  of about 

(10) cycles  per  second (Mason, 1953) and is  of no i n t e r e s t  i n  t he  7 

presen t  work, 

There i s  an a d d i t i o n a l  magnetic e f f e c t  on t h e  elastic con- 

s t a n t s  which i s  p a r t f c u l a r l y  evident  i n  t he  composition range of 30 

t o  45 percent  n i c k e l ,  Alers ,  Nefghbours and Sato (1960, h e r e a f t e r  

r e f e r r e d  t o  as ANSI have measured t h i s  e f f e c t  i n  a s i n g l e  c r y s t a l  

sample by pulse  echo u l t r a s o n i c  methods. Their  r e s u l t s  are shown 

i n  F igure  1 where C = C' = 1 / 2 ( ~ ~ ~ - c ~ ~ )  and B = 1/3(c11+2c12), 
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Figure 1 

Elast ic  Constants Versus Temperature 

of an Iron-Nickel Alloy with  30% Nickel 

Taken from Alers e t  a l .  
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They i , e ,  the  two shear  cons tan ts  and the  bulk modulus r e spec t ive ly .  

c la im an accuracy of b e t t e r  than one percent  abso lu t e ,  bu t  t h e i r  

r e s u l t s  are much more accura te  fo r  relative va lues .  It can be 

seen t h a t  t he  e f f e c t  is charac te r ized  by a marked change i n  s lope  

near  t he  Curie temperature,  

The cause of t h i s  e f f e c t  i s  generaf ly  considered t o  be a 

s t rong  dependence of t he  magnetic exchange energy on in te ra tomic  

d i s t ance ,  This  dependence manifests  i t s e l f  i n  o the r  ways such as 

an anomalously low c o e f f i c i e n t  of  expansion (Masumoto, 1931; Owen 

and Yates, 1937) and an anomalously high volume magnetos t r ic t ion  

( f o r  re ferences  and d i scuss ion  see  KouveP and Wilson, 1961), The 

theory of ferromagnetism in metals is no t  developed w e l l  enough 

to allow the  c a l c u l a t i o n  of t h i s  energy from f i r s t  p r i n c i p l e s .  

Therefore ,  experimental  evidence is e s s e n t i a l  i n  understanding 

the  n a t u r e  of thPs exchange energyJ 

Apart from any considerat ion of the  cause of these  magnetic 

e f f e c t s  i n  t h e  e l a s t i c  constants  we  can c a l c u l a t e  Debye tempera- 

t u r e s  from the  u l t r a s o n i c  e l a s t e e  cons tan ts  measured by ANS. The 

change i n  Debye temperature V ~ P S P P B  temperature f o r  t h e i r  measure- 

ments is shown i n  Figure 2 as ca lcu la t ed  by Anderson's method 

( 0 ,  E, Anderson, 1963. n f s  method is i l l u s t r a t e d  i n  appendix P). 

This  behavior w i l l  be  csmnared with  the  observed temperature 

dependence of t he  x-ray Debye temperature of similar a l l o y s  i n  

Sec t ion  V, 
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Figure 2 

Debye Temperature Versus Temperature 

Calculated from the Elast ic  Constant Values 

of Alers e t  a l .  
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SECTION I11 

THEORY OF THE DEBYE-WALLEB FACTOR 

The t rea tment  given here  w i l l  be  similar t o  t h a t  found i n  

James (1954,  ch. 5 )  except  our  treatment w i l l  inc lude  s t r u c t u r e s  

o the r  than simple cubic. I n  addi t ion ,  t h e  assumptions of t he  Debye 

model w i l l  be introduced i n  a way t o  allow easy modi f ica t ion  later. 

We s ta r t  wi th  t h e  Fraunhofer d i f f r a c t i o n  express ion  f o r  an 

a r r ay  of s c a t t e r i n g  cen te r s  a t  pos i t i ons  r' - r + u wi th  scat- 

t e r i n g  power F which w i l l  conta in  the atomic s c a t t e r i n g  f a c t o r ,  

t he  p o l a r i z a t i o n  f a c t o r ,  t he  Thompson f a c t o r  f o r  a r a d i a t i n g  

e l e c t r o n  and t h e  geometric s t r u c t u r e  f a c t o r .  

t e n s i t y  i s  then: 

n n n  

The s c a t t e r e d  in- 

where # = 2n/A with  A being the  wavelength of the  r a d i a t i o n ;  5 i s  

the  s c a t t e r i n g  v e c t o r  wi th  magnitude 2 s in0  where 28 i s  s c a t t e r i n g  

angle. When the  Laue condi t ions are s a t i s f i e d ,  i.e. a t  the  Bragg 

peak, then 8 - % t he  Bragg angle  and 2 = a r e c i p r o c a l  l a t t i c e  

vector which is normal t o  the  d i f f r a c t i n g  plane.  We have used zn 

as t h e  equi l ibr ium la t t ice  pos i t i on  of t he  n t h  atom and g n a s  the  

displacement of t he  n t h  atom from i ts  equi l ibr ium p o s i t i o n  due t o  
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thermal v i b r a t i o n s .  

t h a t  i n t e r c e p t  t h e  incoming beam. 

The sum i s  over a l l  t he  atoms of t he  c r y s t a l  

We l e t  

3.2 

and expand the  las t  f a c t o r  of equat ion 3.1 i n  powers of p 

t ak ing  t h e  t i m e  average of t h i s  f a c t o r  over a t i m e  l a r g e  compared 

Then n,m' 

wi th  the  per iod of thermal v i b r a t i o n s  w e  f i n d  t h a t  t he  odd powered 

terms average t o  zero  because p i s  a s  l i k e l y  t o  be nega t ive  as 
n,m 

i t  i s  t o  be p o s i t i v e .  Thus, t o  a good approximation w e  can w r i t e  

3.3 

2 
n,m' The nroblem then becomes one o f  f ind ing  the  time average of p 

To do t h i s  we consider  u 

ments due t o  a l l  poss ib l e  thermal waves, so r e s t r i c t i n g  the  d i s -  

cuss ion  t o  acous t i c  waves, w e  have 

as a superpos i t ion  of d i sp lace-  -n 

where k i s  a wave v e c t o r  of magnitude 2 n l ~  

wave l eng th  A ,  

placement of t he  atom due t o  t he  kth wave of p o l a r i z a t i o n  j (j i s  

one of t he  th ree  independent d i r ec t ions  of v i b r a t i o n ) ,  akJ i s  the  

f o r  a thermal wave of 

i s  a u n i t  v e c t o r  i n  t h e  d i r e c t i o n  of t he  d i s -  =w 



1 2  

is t he  angular  frequency, and 6 is t he  a r b i t r a r y  
3j kj 

amplitude,  

phase of t he  kj t h  wave. 

Using equat ions 3.2 and 3.4 we have 

When the  time average is taken a l l  the c ros s  products  between d i f -  

f e r e n t  k's and j ' s  average t o  zero because 6 is random i n  t i m e .  
k j 

Then s i n c e  the  t i m e  average of cos 2 cut is one-half ,  w e  have a f t e r  

us ing  a t r igonometr ic  i d e n t i t y  t o  modify the  las t  term 

To ob ta in  an express ion  f o r  we use s i m i l a r  arguements % 
t o  g e t  

from 

3.6 

rhich the  average t o t a l  v i b r a t i o n a l  energy ( twice the  , n e t i c  

energy) p e r  atom becomes 

3.7 

3.6 

where m i s  the  mass of t he  atom. 

j u s t  t he  t o t a l  number of atoms, 33, times E. 

The t o t a l  v i b r a t i o n a l  energy is 

The t o t a l  energy can 
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a l so  be written as the sum of the energies i n  each vibrational wave, 

E i . e .  V E = f E u e  Theref ore , 
kj e 

3.9 

But for a harmonic osc i l l a tor  

from which w e  get 

Using t h i s  and l e t t ing  

w e  have 

3.12 

so that equation 3 .1  becomes 
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Expanding the  las t  exponent ia l  i n  a power series w e  can write 

where 

3. t 5  

and 

-' Gkj 
I1 i s  j u s t  t he  Bragg i n t e n s i t y  w i t h  e kj as the  Debye-Wallet 

f a c t o r .  I i s  the  one phonon d i f fuse  s c a t t e r i n g  i n t e n s i t y .  The 

o the r  terms give the  multi-phonon d i f f u s e  s c a t t e r i n g  i n t e n s i t y .  

(Maradudin e t  al.,  1963, p.  2 4 9 ) .  The d i f f u s e  s c a t t e r i n g  w i l l  be 

considered f u r t h e r  i n  appendix A where co r rec t ions  f o r  i t s  con- 

t r i b u t i o n  t o  the  measured i n t e n s i t i e s  w i l l  be der ived.  It is  t h e  

Debye-Waller f a c t o r  f o r  the  Bragg i n t e n s i t y  which i s  of i n t e r e s t  

here .  

2 

The common no ta t ion  i s  t o  write the  exponent i n  the  Debye- 

Waller f a c t o r  as 2M so t h a t  



I .  
15 

3.18 

The f i r s t  s t e p  i n  the  Debye model i s  to  r ep lace  the  summation over 

k by an i n t e g r a l .  To do t h i s  we impose c y c l i c  boundary condi t ions  

on the  c r y s t a l  which we assume t o  be composed of N1 by N2 by N3 u n i t  

c e l l s  r e spec t ive ly  along the  th ree  l a t t i c e  vec to r s .  Cycl ic  boundary 

cond i t ions  r equ i r e  a phase change of 2np (p an i n t e g e r )  over t he  

dimensions of t h e  c r y s t a l ;  f o r  a cubic c r y s t a l  wi th  l a t t i c e  parameter, 

U ,  w e  have kiNiQ= 2np f o r  i = 1, 2,  3. Thus, k takes  on d i s c r e t e  

va lues  f o r  which we can cons t ruc t  a l a t t i c e  of spacing 2n/N U with  

each la t t ice  po in t  r ep resen t ing  a poss ib le  k value.  

i 

For a c r y s t a l  

with a l a r g e  number of c e l l s  N = N1N2N3 and f o r  k not  too small t h e  k 

l a t t i c e ' m a y  be represented  by a continum wi th  a d e n s i t y  of l a t t i c e  

3 3 p o i n t s  given by N 0 /(2n) . Therefore,  t he  number of k values  be- 

tween k and k + dk i s  given by 

d N  = ( 2 ~ ) ~  N a 3  w k ' d k  3.19 

However, s i n c e  G 

over w so we in t roduce  the  i s o t r o p i c  phase v e l o c i t y  V =W/k and 

the  i s o t r o p i c  group v e l o c i t y  U - dW dk f o r  t he  thermal waves. Then 

i s  a func t ion  of Tj w e  would l i k e  t o  i n t e g r a t e  
k j 

3.20 
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But the  t o t a l  number of k values  p e r  d i r e c t i o n  of v i b r a t i o n  i s  equal  

t o  t h e  number of atoms i n  the  c r y s t a l ,  n. 
frequency f o r  t h e  j t h  p o l a r i z a t i o n ,  w by 

We now de f ine  a maximum 

mj 

3.21 

Again assuming an i s o t r o p i c  medium we rep lace  (9(s gk]* by i t s  

i s o t r o p i c  average* S 13 and ge t  2 2  

F i n a l l y ,  i n  t he  Debye model w e  assume 

f requencies .  

V = U = a cons tan t  f o r  a l l  

Using t h i s  assumption i n  equat ion  3.21 we ge t  

which when s u b s t i t u t e d  i n t o  equat ion 3.22 y i e l d s  

3.23 

3.24 

NOW, l e t t i n g  y = f ; . c r / ~  and $:tu& we g e t  
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where 

so that 

3,26 

3 2 7  

where we have made 

temperatures, one for  each vibrational direction. 

x-ray Debye temperature, q, by 

Equation 3.27 contains three Debye 
J 

We define a s ingle  

2 2  2 2 2  Then noting that* S = 16 'II sin(b/X w e  have 

3.28 

3.29 

which i s  the usual expression for the exponent i n  the Debye-Waller 

factor.  
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SECTION I V  

EXPERIMENTAL PROCEDURES 

A. X-Ray I n t e n s i t y  Measurements 

To measure t h e  Debye-Waller f a c t o r  as a func t ion  of temper- 

a t u r e  i t  i s  necessary t o  measure the  i n t e g r a t e d  i n t e n s i t y  of Bragg 

peaks a t  d i f f e r e n t  temperatures (see Herbstein,  1961, p. 319). 

There i s  a broad choice i n  experimental procedures f o r  making such 

measurements. We have chosen t o  measure the  i n t e g r a t e d  i n t e n s i t y  

r e f l e c t e d  from t h e  f a c e  of a s i n g l e  c r y s t a l  l a r g e r  than the  in- 

c i d e n t  x-ray beam. One important aspect of t h i s  method i s  t h a t  i t  

i s  p o s s i b l e  t o  use  t h e  same samples bQth i n  t h e s e  measurements and 

i n  t h e  u l t r a s o n i c  measurements. There are d i f f i c u l t i e s  a s s o c i a t e d  

wi th  t h i s  type of measurement such as su r face  roughness and the  l ack  

of p e r f e c t  p a r a l l e l i s m  between the  phys ica l  su r f ace  and the  des i r ed  

c r y s t a l o g r a p h i c  plane. These d i f f i c u l t i e s  are minimized by the  

choice of high angle r e f l e c t i o n s  f o r  t h e  measurements. These high 

angle  r e f l e c t i o n s  a l s o  tend t o  maximize the  e f f e c t s  t o  be observed. 

Thus, e i t h e r  t he  (800) o r  the (660) peak o r  both were 

chosen f o r  t h e  measurements. 

f a l l  a t  20 angles  of about 105' and 115' r e spec t ive ly .  

With molybdenum Ka r a d i a t i o n  t h e s e  

Large g ra ins  i n  i n g o t s  prepared from vacuum melted mixtures  

of high p u r i t y  i r o n  and n i c k e l  i n  the  des i r ed  proport ions were used. 

The phys ica l  su r f ace  was ground and pol ished i n  a series of s t e p s  

u n t i l  i t  was p a r a l l e l  t o  a (100) o r  a (110) plane of a l a r g e  grain.  
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The p a r a l l e l i s m  was confirmed t o  wi th in  2' by back r e f l e c t i o n  Laue 

photographs. 

of t he  su r face  t o  remove m a t e r i a l  cold worked i n  the  gr inding process .  

The f i n a l  s t e p  was a chemical o r  e lec t r ica l  p o l i s h i n g  

The sampleswere then cemented t o  1/8 inch diameter g l a s s  

rods with Saureisen high temperature cement. 

s i t i o n e d  on t h e  rods so t h a t  the polished su r face  could be ad jus t ed  

t o  t h e  d i f f r a c t i o n  plane of a G. E. XRD-5 d i f f r ac tomete r  when t h e  

rod was i n s e r t e d  i n  a e u c e n t r i c  goniometer mounted on a G. E. gon- 

i o s  tat. 

The samples were po- 

A take-off angle  of about 2' was used with a G. E. CA-7 x- 

r a y  tube. The beam co l l ima to r  was t h a t  suppl ied with t h e  G. E. 

gon ios t a t .  The u n f i l t e r e d  beam was d i r e c t e d  t o  the  f a c e  of t h e  

c r y s t a l  and t h e  r e f l e c t e d  x-rays were counted with a s c i n t i l l a t i o n  

counter  with pu l se  h e i g h t  discr iminat ion.  The counter window was 

1.2 degrees  wide and 2.4 degrees high. 

f u l l  r e f l e c t e d  beam. 

This window accepted the  

Af t e r  alignment, t he  sample was t e s t e d  f o r  c r y s t a l  per- 

f e c t i o n  with an w m o t i o n  scan. 

h a l f  i n t e n s i t y  of .6  degrees or  less was the  c r i t e r i o n  f o r  acceptance. 

A symmetrical peak of f u l l  width a t  

A 2 8  scan was chosen f o r  t he  i n t e n s i t y  measurements. The 

scanning r a t e  was . 2  degrees pe r  minute. 

r equ i r ed  t o  include both the  K 

ground was counted f o r  100 seconds a t  both t h e  s t a r t i n g  p o i n t  and 

t h e  ending p o i n t  of the  28 scan. Thus, t h e  background c o r r e c t i o n s  

A scan of about 3" was 

and the qL i n t e n s i t i e s .  Back- 
a: 
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include the  con t r ibu t ions  of t he  white r a d i a t i o n  and the  harmonic 

con t r ibu t ions  from o t h e r  peaks. (Young, 1961) The average of t h e  two 

background counts was mul t ip l i ed  by the t o t a l  counting t i m e  f o r  t h e  

scan and t h i s  product was sub t r ac t ed  from t h e  t o t a l  count accumulated 

during the  scan. This d i f f e r e n c e  was then the  measured i n t e n s i t y  t o  

which the  d i f f u s e  s c a t t e r i n g  co r rec t ions  ( appendicies A and B) were 

appl ied t o  ge t  t he  i n t e g r a t e d  i n t e n s i t y .  The s ta t i s t ica l  counting 

e r r o r  i n  t h i s  procedure was less than one-half percent  but  the 

t o t a l  e r r o r  i s  est imated t o  be  about one percent  t o  allow f o r  un- 

co r rec t ed  f l u c t u a t i o n s  i n  the source i n t e n s i t y  and counting sen- 

si t i v i t y  . 

B. Temperature Control and Measurement 

For  temperatures above room temperature the  c r y s t a l  w a s  

heated by focusing l i g h t  onto t h e  c r y s t a l  from a 500 wat t  DHJ pro- 

j e c t i o n  lamp with an i n t e r n a l  focusing r e f l e c t o r .  The temperature 

was ad jus t ed  by varying the voltage t o  the f i lament  of t h e  lamp. 

The f o c a l  area of t he  lamp was l a rge  enough t o  include the e n t i r e  

sample b u t  small enough t o  avoid excessive hea t ing  of t h e  gon- 

iometer from which the  sample was thermally i n s u l a t e d  by the  g l a s s  

rod. 

For temperatures below room temperature the  sample was 

cooled by a stream of dry ni t rogen gas which had been passed 

through a copper c o i l  imnersed in  a cryogenic bath.  

n i t r o g e n  was d i r e c t e d  onto the  c r y s t a l  through a s p e c i a l  c r y o s t a t i c  

The stream of 

r, 
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tube wi th  p rov i s ions  f o r  mixing warm ni t rogen with t h e  cold stream 

t o  a d j u s t  t h e  temperature. It a l s o  had an e x t e r n a l  j a c k e t  f o r  d i r e c t -  

i n g  a d e f r o s t i n g  strqam around the cold stream. 

The temperature of t he  sample was read by f i n e  wire thermo- 

couples cemented t o  the  sample. The thermocouples were placed so 

t h a t  they would show any s i g n i f i c a n t  thermal g rad ien t s  ac ross  t h e  

sample. The thermocouples were checked a t  high temperatures by 

Tempilaq temperature i n d i c a t i n g  wax. The l i n e a r i t y  of t h e  temper- 

a t u r e  measurements was e s t a b l i s h e d  by comparison of t he  s lope  of 

l a t t i ce  cons t an t  ve r sus  temperature curves obtained i n  our  measure- 

ments with those of similar a l l o y s  reported by Owen and Yates (1937). 

The est imated e r r o r  i n  t h e  temperature determinat ions a t  t he  

h i g h e s t  and lowest temperatures is p lus  o r  minus 5 ' .  

C. Procedures 

Before any i n t e n s i t y  measurements were made on i t  the sample 

was heated t o  a temperature higher than any subsequent measurement 

temperature and held the re  about one hour. This formed a t h i n  

oxide f i l m  on the  su r face  of t he  sample which w a s  n o t  increased i n  

t h e  subsequent measurements. 

The i n t e n s i t y  d a t a  were obtained i n  a series of runs s t a r t -  

i n g  with room temperature measurements; then measurements a t  o t h e r  

temperatures were made; f i n a l l y ,  another  measurement a t  room temper- 

a t u r e  was made and compared with the  f i r s t  t o  serve as a check on 

d r i f t  i n  source i n t e n s i t y  or counting s e n s i t i v i t y .  
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The i n t e n s i t y  measurements were made a f t e r  allowing the  

sample t o  e q u i l i b r a t e  a t  some temperature. 

search out  t he  exact p o s i t i o n  of t he  peak. 

on both s i d e s  of t he  peak were found f o r  both the  and w m o t i o n s  

and then these  motions were se t  a t  pos i t i ons  h a l f  way between these.  

The changes i n  peak p o s i t i o n  f o r  motions o t h e r  than 20 were only a 

few hundredths of a degree and could be a t t r i b u t e d  t o  s l i g h t  s h i f t s  

i n  t h e  c r y s t a l  p o s i t i o n  due t o  the  temperature changes. 

i n  28 were due t o  t h e  change i n  l a t t i c e  constant  with temperature 

and were used t o  measure t h a t  change. 

2 0  scan was made i n  e x a c t l y  t h e  same way f o r  every temperature. 

scan range was chosen t o  be symmetrical with r e spec t  t o  the  K and 
41 

K peaks. Temperatures were read throughout t he  measurement pro- 

cedure and excessive d r i f t s  i n  temperature were a b a s i s  f o r  throwing 

ou t  t he  i n t e n s i t y  measurement. 

The next  s t e p  was t o  

The ha l f  i n t e n s i t i e s  

The changes 

Once t h e  peak w a s  found t h e  

The 

a2 

D. Data Reduction 

The f i r s t  s t e p  i n  reducing t h e  i n t e n s i t y  d a t a  t o  a u s e f u l  

form was t o  apply t h e  c o r r e c t i o n s  f o r  d i f f u s e  s c a t t e r i n g  and f o r  

l a t t i ce  expansion as descr ibed i n  appendix B. 

be w r i t t e n  

The i n t e n s i t y  can then 

where I,, i s  t h e  i n t e n s i t y  t h a t  would be measured i f  a l l  of t h e  atoms 



23 

From equation 3.29 were rigidly held at their equilibrium positions. 

9.2 

In our measurements I,, is not known so our knowledge is restricted 

to the intensity relative to the intensity I at some reference 

temperature T 

R 

R' 

4.3 

In our case TR = 298'K and I 

empirically corrected to 298'K. Thus, 

was our room temperature measurement R 

from which we get 

or 

4; 4 

4.5 
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%=a($) we could c a l c u l a t e  2M With 2MR we could R' 

From 2M(T) w e  can ca l -  , 

I f  w e  knew 

c a l c u l t e  2M(T) f o r  each of t he  d a t a  poin ts .  

c u l a t e  @(T). 

t o  assume a va lue  of i n  order  t o  c a l c u l a t e  @(T).  However, 

Chipman (1960) has pointed out  t h a t  the low temperature @@) values  

ca l cu la t ed  from equat ion 4.5 a r e  very s e n s i t i v e  t o  the  choice of q. 
This  r e s t r i c t s  t he  choice of 

phys i ca l ly  reasonable  @ versus  T curves a t  low temperatures.  

man success fu l ly  appl ied  such a c r i t e r i o n  i n  h i s  measurements on 

po lyc rys t a l ine  samples. 

Unfortunately,  Q i s  n o t  known so i t  i s  necessary 

t o  a narrow range i f  we r equ i r e  

Chip- 

The above procedure of assuming a value f o r  and ca l cu l -  

a t i n g  a @(f) va lue  f o r  each measured i n t e n s i t y  i s  appl ied  t o  

measurements on our  samples i n  Sect ion V. 
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SECTION V 

RESULTS 

I n t e g r a t e d  i n t e n s i t y  measurements were made over a range of 

temperatures  on f o u r  samples: pure n icke l  and nominal compositions 

of 29, 31 and 33 atomic percent  n icke l  i n  i ron .  A Debye temperature 

was c a l c u l a t e d  f o r  each of the  i n t e n s i t y  measurements by the  pro- 

cedures i n  Sec t ion  IV-D. The r e s u l t s  of these  c a l c u l a t i o n s  a r e  

shown f o r  our  measurements on n icke l  in Figure 3. Smooth curves 

drawn through the  experimental  po in ts  a r e  shown f o r  t h r e e  choices  

of q. 
of 91, t h e  low temperature va lues  would show extreme v a r i a t i o n s  

which are i n c o n s i s t e n t  with any physical  model. It should be noted 

t h a t  t he  s lope  of t he  high temperature po r t ions  of t he  curves i n  

F igure  3 do not  change much from one choice of @ t o  another .  

It can be seen t h a t ,  except f o r  a narrow range of choices  

I n  Figure 4 i s  shown the  change i n  Debye temperature f o r  

n i c k e l  ca l cu la t ed  from the  e l a s t i c  cons tan t  da t a  of ANS. The re- 

s u l t  of our  x-ray measurements and those of Simerska (1962) a r e  

a l s o  shown i n  Figure 4. E r ro r  bars a r e  shown i n d i c a t i n g  the  e f -  

f e c t  of 1% i n t e n s i t y  e r r o r s  and 5OC temperature e r r o r s  on our da t a .  

The v a l u e  of f o r  our d a t a  w a s  chosen so t h a t  our low temperature 

d a t a  would be c o n s i s t e n t  w i t h  the  low temperature e l a s t i c  cons tan t  

curve. 

i n t e n s i t y  with s c a t t e r i n g  angle; h i s  room temperature va lue  i s  about 

405'K compared wi th  our  va lue  of 412'K. 

Simerska's values  were obtained from the  v a r i a t i o n  of Bragg 

This agreement s e rves  a s  a 
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Figure 3 

Debye Temperature Versus Temperature 

from X-ray Measurements on Nickel 
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Figure 4 

Comparison of the %an= i n  Dehye Temperature 

Versus Temperature from X-ray and Ultrasonic 

Measurements on Nickel 
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check on our procedures. A s  can be seen i n  Figure 4, our va lues  

f a l l  on t h e  curve from the e l a s t i c  constant d a t a  w i t h i n  experimental  

e r r o r .  The room temperature value of @ ca lcu la t ed  from t h e  e l a s t i c  

constant  d a t a  i s  478'K. This i l l u s t r a t e s  t he  agreement i n  temperature 

dependence between the  x-ray and the  u l t r a s o n i c  r e s u l t s  d e s p i t e  

t he  disagreement i n  the  s i z e  of @. 

We now t u r n  our  a t t e n t i o n  t o  t h e  a l loys .  Since the compo- 

s i t i o n  of our  a l l o y s  w a s  not  exac t ly  t h e  same as t h e  a l l o y  measured 

by ANS, i t  was necessary t o  es t imate  t h e  e f f e c t  of small composition 

changes on t h e  e l a s t i c  constant  d a t a  i n  o rde r  t o  make comparisons. 

The most important f a c t o r  i n  t h e  r e l a t i v e  p o s i t i o n  of t he  e l a s t i c  

cons t an t  anomalies is the  Curie t empera tu re  of the samples. However, 

i n  t h e s e  a l l o y s  the Curie temperature i s  n o t  w e l l  defined and may 

vary with t h e  method of measurement. Fortunately,  t he  l a t t i ce  

parameter, 0, ver sus  temperature curves a l s o  i n d i c a t e  t h e  temper- 

a t u r e  of t hese  anomalies. This can be  seen i n  Figure 5 where 44/4 

ver sus  T i s  p l o t t e d  f o r  our a l l o y s  along with similar d a t a  from 

ANS. These curves along with Curie temperature measurements made on 

our a l l o y s  were used t o  e s t ima te  the temperature s h i f t  of t h e  

magnetic anomalies i n  our  a l l o y s  r e l a t i v e  t o  the  a l l o y  of A N S .  The 

procedure f o r  t h i s  and arguments t o  j u s t i f y  the minor changes i n  

t h e  s i z e  of t he  e l a s t i c  anomalies i n  our a l l o y s  are given i n  

appendix C. 

Measurements were not  made on the 29 and 31 percent  a l l o y s  



29 

Figure 5 

Change i n  Lattice Parameter Versus Temperature 

for Our Alloys and The Alloy of Alers e t  a l .  
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below room temperature because of the low temperature phasc t rans-  

formation t h a t  occurs i n  these a l loys .  

c e n t r a t e  on the 33 percent  a l loy  f i r s t .  

6 shows 4Va 

adjusted f o r  the  33 percent  a l loy .  

corresponds t o  a l i n e a r  ex t rapola t ion  of the ANS da ta  i n t o  the low 

temperature region. Based on t h e  nature  of the magnetic e f f e c t s  i t  

is expected t h a t  any devia t ion  from t h i s  l i n e a r i t y  should be an 

upward curva ture  a t  the lowest temperatures. The dashed curves 

show d$/O 

seve ra l  choices  of 9. The indiv idua l  d a t a  poin ts  from which 

these curves were determined are shown f o r  only one curve t o  avoid 

confusion. The curves are drawn t o  coincide a t  a temperature above 

the Curie temperature because the  magnetic e f f e c t s  should be small  

there .  As the  temperature i s  lowered past the  Curie temperature t he  

magnetic e f f e c t s  become l a rge  and show up as a la rge  change i n  

s lope  i n  the  e l a s t i c  constant  curve. I t  can be seen t h a t  a com- 

parable  change i n  s lope  does not  occur i n  the  x-ray da ta .  I t  can 

a l s o  be seen from Figure h t h a t  t h i s  conclusion is no t  s e n s i t i v e  t o  

t h e  choice of 9. 
- a does not  produce a change i n  slope comparable t o  t h a t  i n  the  

e l a s t i c  cons tan t r e s u l t s  . 

For t h a t  reason we w i l l  con- 

The s o l i d  curve i n  Figure 

versus  T ca lcu la ted  from the  e l a s t i c  constant  da t a  

The crossed por t ion  of the curve 

versus  T as determined from our experimental  po in t s fo r  

Even the  obviously low choice of for curve 

On t he  o t h e r  hand, the x-ray curves show a smaller  bu t  de- 

f i n i t e  change i n  s lope  near  the  Curie temperature. Thus, t he re  
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Figure 6 

Change i n  Debye Temperature Versus 

Temperature for the 33 Percent N i c k e l  Alloy 
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must be  some manifestat ion of the magnetic e f f e c t s  i n  the  x-ray 

da ta .  

t h e  nex t  s ec t ion .  

Poss ib l e  explanat ions of these r e s u l t s  w i l l  be discussed i n  

The d a t a  f o r  the 29 and 31 percent samples are shown i n  

Figure 7. These r e s u l t s  are less d e f i n i t i v e  f o r  two reasons. F i r s t ,  

t h e  Curie temperatures are lower and t h e r e f o r e ,  the c r i t i ca l  region 

below the  Curie temperature i s  i n  a temperature range which i s  

more s e n s i t i v e  t o  the choice of . Second, the lack of low 

temperature d a t a  makes the  choice of 91 less c e r t a i n .  However, 

t h e  d a t a  f o r  t h e  31 percent  sample seem t o  support  t he  conclusions 

drawn from t h e  33 percent  sample. 

sample are a t  least  no t  i n c o n s i s t e n t  with those conclusions.  

The d a t a  f o r  the 29 percent  

The d i f f e rences  i n  s lope  above t h e  Curie temperature are a t -  

t r i b u t e d  t o  t h e  p e r s i s t e n c e  of some magnetic e f f e c t s  even above 

t h e  Curie temperature. This i s  r e a d i l y  seen i n  t he  curve f o r  B 

shown i n  Figure 1. 
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Figure 7 

Change i n  Debye Temperature Versus Temperature 

€or the 29 and 31 Percent Nickel Alloys 
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SECTION V I  

DISCUSSION OF RESULTS 

The d i f f e r e n c e  i n  the temperature dependence of t he  Debye 

temperature determined from u l t r a s o n i c  measurements and x-ray mea- 

surements must de discussed i n  terms of t he  e s s e n t i a l  d i f f e r e n c e s  

i n  t h e  measuring process.  The u l t r a s o n i c  measurements were made 

by applying a stress a t  f requencies  of about (10) cyc le s  pe r  se- 

cond. The x-ray r e s u l t s  a r e  determined by the displacements of 

atoms from t h e i r  equi l ibr ium pos i t i ons  due t o  thermal v i b r a t i o n s ;  

t h e s e  displacements are determined by thermal waves having fequen- 

cies over a range around ( 1 0 > l 2  cycles pe r  second. Therefore,  any 

c o n t r i b u t i o n  t o  t h e  e l a s t i c  constants which con t r ibu te s  i n  one of 

t h e s e  frequency ranges and n o t  t h e  o the r  would cause a d i f f e r e n c e  

i n  t h e  Debye temperature determined by t h e  two methods. Further- 

more, any stress induced contr ibut ions i n  t h e  u l t r a s o n i c  measure- 

ments would n o t  be measured by the  x-ray techniques s i n c e  the  x-ray 

measurements are v i r t u a l l y  s t r e s s l e s s .  

7 

It is a l s o  necessary t o  discuss  the  na tu re  of the magnetic 

e f f e c t s  i n  o rde r  t o  i n t e r p r e t  our observat ions.  

n a t u r e  of t h e  magnetic e f f e c t s  w i l l  be discussed.  

t he  d i f f e r e n c e  between the x-ray and the  u l t r a s o n i c  ve r sus  T 

curves w i l l  be discussed.  

I n  p a r t  A t he  

Then i n  p a r t  €5, 

0 

A. Magnetic E f f e c t s  

The theory of magnetic exchange i n t e r a c t i o n s  which lead t o  
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coupling between the magnetic manents of atoms i n  a c r y s t a l  has 

r e c e n t l y  been reviewed by Anderson ( P. W, Anderson, 1963). H e  

states t h a t  "it can be f a i r l y  s a i d  t h a t  most of the  mechanisms i n  in- 

s u l a t o r s  are a t  least  q u a l i t a t i v e l y ,  and sometimes q u a n t i t a t i v e l y ,  

understood, while t he  exchange question i n  metals i s  s t i l l  almost 

completely open." Nevertheless,  the concept of an exchange energy 

i s  f r equen t ly  used i n  the  discussion of t he  

metals and a l l o y s .  It i s  of t he  form (P. W.  Anderson, 1963, p. 101): 

ferromagnetism of 

where J i s  t h e  exchange i n t e g r a l  between e l e c t r o n s  and 

i s  t h e  s p i n  of t h e  i t b  e l ec t ron .  This i s  t h e  b a s i s  of an i n t e r -  

atomic exchange energy J (Bethe, 1933) which i s  shown i n  Figure 8 

as a func t ion  of interatomic dis tance normalized t o  the r a d i u s  of t he  

d e l e c t r o n  s h e l l .  This energy can be r e l a t e d  t o  t h e  Curie temper- 

a t u r e  of ferromagnetic elements and used t o  q u a l i t a t i v e l y  p l ace  the  

elements on t h e  curve i n  Figure 8 (Bozorth, 1951, p. 444). I n  the  

case of a disordered a l l o y  such a procedure i s  no t  poss ib l e  because 

d i f f e r e n t  p a i r s  of atoms would have d i f f e r e n t  exchange ene rg ie s  and 

would f a l l  on d i f f e r e n t  po r t ions  of t h e  curve. 

i s  adopted by Kondorsky and Sedov (1960) and by Kouvel and Wilson 

(1961) i n  i n t e r p r e t i n g  t h e i r  measurements of t he  l a r g e  p re s su re  de- 

pendence of magnetization i n  i ron-nickel  a l l o y s  of 30 t o  50 pe rcen t  

n i c k e l .  The placement of t h e  d i f f e r e n t  i n t e r a c t i o n s  i n  Figure 8 i s  

i) 

This p o i n t  of view 
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Figure 8 

Bethe-Slater Curve 
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taken from Kouvel and Wilson. In p a r t i c u l a r  n o t i c e  t h a t  the iron- 

i r o n  i n t e r a c t i o n  i n  a face-centered-cubic l a t t i c e  i s  taken a s  ne- 

gat ive.  This l eads  t o  t h e  p o s s i b i l i t y  t h a t  some i r o n  atoms may have 

a very small o r  even a n e t  negat ive J va lue  f o r  some environment of 

nea rnes t  neighbors.  A s  w e  have indicated,  t he  meaning of such an 

interatomic exchange energy i n  metals i s  no t  clear on t h e o r e t i c a l  

grounds. Q u a l i t a t i v e l y  i t  seems j u s t i f i a b l e  i n  exp la in ing  the  pres- 

su re  dependence of the magnetization i n  the  a l l o y s  under discussion.  

Furthermore, ANS (Alers ,  Neighbors and Sato,  1960) have used it  

success fu l ly  i n  analyzing t h e i r  u l t r a s o n i c  measurements on these  

a l l o y s .  They introduce the  e l a s t i c  energy as 
~~~ 

~~~~ 

~ -~ ~ ~~~ ~ 

~ ~~ ~~~ 

6.2 

where J(r) i s  the  in t e ra tomic  magnetic exchange energy, X/X, the  

re la t ive  magnetization, z t h e  number of n e a r e s t  neighbors,  N t h e  

number of atoms per  u n i t  volume and Eo t h e  c o l l e c t i o n  of a l l  ener- 

g i e s  not  r e l a t e d  t o  the alignment of magnetic moments. 

The second term i n  equation 6.2 i s  an obvious analogy with 

equat ion 6.1 with Bethe's  concept of i n t e ra tomic  exchange sub- 

s t i t u t e d  f o r  the e l e c t r o n i c  exchange i n t e g r a l .  From equation 6.2 ANS 

w r i t e  f o r  t h e  two shea r  modulii  and the bulk modulus 
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! 

where the  s u b s c r i p t  I denotes constant magnetization and the  sub- 

s c r i p t  0 denotes the  value i n  the absence of ferromagnetism. The 

equ i l ib r ium in t e ra tomic  d i s t ance  i s  denoted by re. 

terms are c o n s i s t e n t  with Fuch's (1936) expressions f o r  n e a r e s t  

These magnetic 

neighbor i n t e r a c t i o n s  i n  face-centered-cubic materials. 

I n  t h e i r  d i scuss ion  they assume t h a t  ~ 

I w 2  

which i s  important s i n c e  the measurements a r e  a c t u a l l y  made a t  con- 

s t a n t  magnetic f i e l d ,  H ,  and not  at constant  magnetization. The 

second term on t h e  r i g h t  s i d e  of equation 6.6 i s  the so-called 

Dgring term i n  which the  magnetization is changed by the  appl ied 

dV stress through t h e  volume magnetostr ic t ion,  W = - dH ' 
On t he  o t h e r  hand they argue t h a t  CI = CH and C; = 

i t  i s  a known f a c t  t h a t  shear ing d i s t o r t i o n s  (spontaneous morphic 

s i n c e  

I' 

magne tos t r i c t ion ) ,  which r e s u l t  from a change i n  the spontaneous 

magnetization, are small compared to  the  accompanying v o l u m d i s t o r -  

t i o n s  (spontaneous volummagnetostriction)." 
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From t h e i r  measurements ANS conclude t h a t  

and 

f o r  t h e i r  iron-nickel a l loy.  

On t h e  b a s i s  of these values e s s e n t i a l l y  a l l  of t h e  magnetic 

e f f e c t  i n  B i s  due t o  the D'dring term. 

v a l u e  of t h e  Db'ring tern because they d id  n o t  know t h e  value of 

dI /dH-  Iii Tppenctix-E we-dmive -a f i f fer-ent  expressietl  for t he  

D'dring term which can be ca l cu la t ed  from a v a i l a b l e  data .  The va lues  

c a l c u l a t e d  are c o n s i s t e n t  with t h e  e n t i r e  magnetic e f f e c t  i n  B 

being due t o  the  D k i n g  term. 

on t h e  Debye temperature w e  remove the  Daring term from B and give B 

a nega t ive  temperature s lope  of 1.4 ( l o r 7  pe r  C o .  

48 ver sus  T curve can be seen in  curve i n  Figure 9. This i s  t o  

be compared with curve 2 i n  which a l l  of t he  magnetic e f f e c t s  mea- 

sured u l t r a s o n i c a l l y  have been included. 

ANS could no t  c a l c u l a t e  the 

To see the  e f f e c t  of t he  DSring term 

The r e s u l t i n g  

0 

The l a r g e  u n c e r t a i n t i e s  given by ANS f o r  t h e i r  va lues  quoted 

above come p r i n c i p a l l y  from the  uncertainty i n  the  volume depen- 

dence of C and C ' .  This volume dependence causes some of t he  ob- 

served change i n  s lope  due t o  t h e  change i n  thermal expansion be- 

low t h e  Curie temperature. As discussed i n  appendix C i t  is  pos- 
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Figure 9 

Effect of Removing Different Magnetic Contributions 
~~~~ 

~~~~ 

~~~~ ~ ~~~ ~~~~~~~~~ 

~~~~~ ~~~ 
~~~~~ 

i n  the Debye Temperatures Versus Temperature 

Calculated from Elast ic  Constants 
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s i b l e  t o  a t t r i b u t e  a l l  of t h e  observed change i n  s lope  i n  C ve r sus  

T t o  t h i s  volume dependence. I n  f a c t  i t  i s  argued t h e r e  t h a t  t h i s  

much volume dependence i s  t o  be expected i n  C. For C'  t he  v o l w d e -  

pendence i s  expected t o  be much less; moreover, even a l a r g e  volume 

dependence of C' could n o t  account f o r  t he  p o s i t i v e  s lope  observed. 

Therefore,  we a t t r i b u t e  

t o  t h e  volurne dependence 

s lope  i n  C '  ve r sus  T t o  

c o n s i s t e n t  with the  ANS 

most of the change i n  s lope  of C ve r sus  T 

of C; we  a t t r i b u t e  most of t he  change i n  

the  magnetic term i n  equat ion 6.4. This i s  

r e s u l t s  f o r  d J /d r  and d 2 2  J / d r  . 
To see the  e f f e c t s  of t hese  t w o  f a c t o r s  on t h e  Debye temp- 

e r a t u r e  ca l cu la t ed  from the e l a s t i c  constants  we have removed t h e  

-7 magnetic e f f e c t  from C' and given C'  a negat ive s lope  of 7 (10) 

p e r  Co i n  curve 5 of Figure 9. This leaves only the  e f f e c t s  i n  C 

t o  cause t h e  change i n  s lope  i n  curve c; t h e r e f o r e ,  t h e  change i n  

s lope  i n  curve c can be considered as being due t o  volume e f f e c t s  

alone. 

Curve a i n  Figure 9 i s  an extension of t h e  high temperature 

s lope  of curve 5. 

c e n t  sample with %= 43O0K. 
The d a t a  p o i n t s  i n  Figure 9 are f o r  t h e  33 per- 

B . I n t e r p r e t a t i o n  

From t h e  preceeding discussion w e  see t h a t  t h e r e  are t h r e e  

d i s t i n g u i s h a b l e  e f f e c t s  which con t r ibu te  t o  the change i n  s l o p e  of t he  

ve r sus  T curves c a l c u l a t e d  from the u l t r a s o n i c  e l a s t i c  con- @ 

s t a n t s .  One i s  t h e  stress induced Db'ring term. Another i s  the  so- 
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c a l l e d  " i n t r i n s i c "  magnetic e f f e c t  introduced by AEaS and shown i n  

equat ions 6 . 3  - 6.5. The t h i r d  is the  dependence of t h e  e las t ic  

cons t an t s  on volume which i s  only i n d i r e c t l y  due t o  magnetic e f -  

f e c t s  through the  change i n  s lope  of l a t t i c e  constant  versus  temp- 

e r a t u r e .  

f e c t s  from the  e l a s t i c  cons t an t s  has been shown successively i n  

going from curve t o  t o  r_ t o  & i n  Figure 9. 

The approximate e f f e c t  of success ive ly  removing t h e s e  ef-  

F i r s t  l e t  us consider  whether o r  n o t  t h e  D8ring term would 

tt i s  due t o  be expected t o  c o n t r i b u t e  t o  the  x-ray measurements. 

stress induced changes i n  the  magnetization whkch can be a t t r i b u t e d  

t o  a dependence of J on interatomic d i s t a n c e ,  Therefore,  i t  should 

no t  be p re sen t  i n  t h e  stressless x-ray measurements. It i s  argued 

by ANS t h a t  a similar e f f e c t  does no t  e x i s t  i n  C and C '  because 

t h e r e  i s  no volume s t r a i n  involved i n  t h e s e  shear  d i s t o r t i o n s  and 

because the spontaneous morphic magnetostr ic t ion i s  small. However, 

i n  a disordered a l l o y  these  arguments are no t  e n t i r e l y  va l id .  The 

e f f e c t  on C and C '  e x i s t  i n  a disordered a l l o y  because a n e t  

change i n  J f o r  a given atom can take p l ace  i n  a shear ing s t r a i n  i f  

t h e  n e a r e s t  neighbors involved in  t h e  shea r ing  s t r a i n  about t he  atom 

have a d i f f e r e n t  value of dJ/dr.  This change could cause t h e  rever- 

sal i n  the magnetic moment of some atoms and by s t a t i s t i c a l  argu- 

ments involving the  r e l a t i v e  number of atoms i n  a given environment 

t h e r e  could be  a n e t  change i n  magnetization so t h a t  the assumption, 

CI = % and C; = C' used by ANS would no t  n e c e s s a r i l y  be v a l i d .  H 
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However, such an argument could n o t  p r e d i c t  t h e  observed d i f f e r e n c e  

i n  the  s i z e  of t he  magnetic e f f e c t  i n  C and C' without u s ing  some 

r a t h e r  unfounded assumptions. Therefore, i t  does not  seem reasonable  

t o  a t t r i b u t e  the observed magnetic e f f e c t s  i n  these  shear  s t r a i n s  

t o  stress induced magnetization changes. I n  f a c t ,  i t  i s  d i f f i c u l t  

t o  exp la in  t h e  d i f f e r e n c e  i n  the s i z e  of t he  magnetic c o n t r i b u t i o n  

i n  C and C'  without invoking equations 6 . 3  and 6 . 4  as used by A N S .  

Turning now t o  the  volume dependence of t he  e las t ic  cons t an t s  

we argue t h a t  t h i s  e f f e c t  should c e r t a i n l y  appear i n  the  x-ray 

measurements s i n c e  i t  i s  due t o  the volume dependence of t h e  non- 

magnetic terms i n  equations 6 . 3  - 6 . 5  and does n o t  depend on t h e  

n a t u r e  of t h e  magnetic e f f e c t s .  We see i n  Figure 9 t h a t  t h e  d a t a  

f o r  one choice of 

sonably w e l l .  Thus, i t  i s  poss ib l e  t o  a t t r i b u t e  the  observed change 

A @  i n  s l o p e  i n  t h e  x-ray d a t a  f o r  - versus T t o  the volume e f f e c t  
8 

alone. 

f o r  t h e  33 percent  a l l o y  f i t s  curve rea- 

Apparently the  e f f e c t s  present  i n  curve of Figure 9 

which are due t o  the  magnetic e f f e c t s  i n  C' do n o t  appear i n  t h e  x- 

r ay  da t a .  Since w e  could n o t  a sc r ibe  these  con t r ibu t ions  t o  C '  t o  

stress induced e f f e c t s  then w e  m u s t  consider  them as being f r e -  

quency dependent i n  order  t o  explain t h e  d i f f e r e n c e  between t h e  x- 

r ay  and u l t r a s o n i c  r e s u l t s . .  To e s t ima te  the  e f f e c t  of such a f r e -  

quency dependence we have developed a simple model i n  appendix D t o  

t reat  a frequency dependent magnetic con t r ibu t ion  t o  t h e  e las t ic  

cons t an t s .  It serves  two functions.  F i r s t ,  i t  shows t h a t  f r e -  
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quency dependent e l a s t i c  cons tan ts  cannot account f o r  a l a r g e  neg- 

a t i v e  curva ture  i n  the  @ versus  T data. Therefore ,  i t  cannot be 

argued t h a t  a lower va lue  which gives such a curva ture  could have 

been chosen. 

a t  which the  magnetic e f f e c t s  could con t r ibu te  t o  the  e las t ic  con- 

s t a n t s .  Using t h i s  model and comparing the  d a t a  i n  Figure 9 wi th  

curve c w e  estimate t h a t  t he  i n t r i n s i c  magnetic e f f e c t s  could no t  

be c o n t r i b u t i n g  a t  f requencies  higher than one-tenth of t he  Debye 

frequency. I n  the  extreme case  of allowing no volume dependence of 

t he  elastic cons tan ts  w e  compare the d a t a  wi th  curve a and estimate 

t h a t  t he  i n t r i n s i c  magnetic e f f e c t s  could not  c o n t r i b u t e  a t  more 

than three- ten ths  of t he  Debye frequency. 

Second, i t  al lows an est imate  of t he  h ighes t  frequency 
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SECTION VI1 

CONCLUSIONS 

Reviewing the  s i t u a t i o n  as presented i n  the  las t  s e c t i o n  w e  

see t h a t  i t  seems necessary t o  use an in t e ra tomic  exchange energy, J, 

i n  order  t o  exp la in  the  u l t r a s o n i c  e l a s t i c  cons tan t  measurements 

of ANS on an a l l o y  of 30 percent  n icke l  i n  i ron .  

an energy i s  not  c l e a r  from the  theory of ferromagnetism i n  metals. 

This  i s  e s p e c i a l l y  t r u e  i n  t h e  case of a d i sordered  a l l o y  such as 

the  one measured by ANS.  There i s  evidence t o  i n d i c a t e  t h a t  t h e  d i f -  

f e r e n t  elements i n  t h i s  a l l o y  can have widly d i f f e r i n g  values  of J. 

I n  t h a t  case  a s i n g l e  value of J appropr ia te  f o r  use  i n  equat ion 

6.2 must r ep resen t  some s o r t  of average of the  d i f f e r e n t  in te ra tomic  

exchange energ ies .  

The meaning of such 

It i s  p o s s i b l e  f o r  t h i s  averaging process  t o  be  inherent  i n  

t h e  n a t u r e  of t h e  ferromagnet ic  i n t e r a c t i o n s .  

s o r t  of long range ferromagnet ic  i n t e r a c t i o n .  Such long range 

i n t e r a c t i o n s  have been pos tu l a t ed  (see Paskin,  1960 and the  r e f e r -  

ences the re in )  bu t  a r e  not  e s t ab l i shed  experimental ly .  

This  would imply some 

A l t e r n a t i v e l y ,  one might descr ibe the  averaging as being 

some s o r t  of s p a t i a l  average over the  wavelength of the  u l t r a s o n i c  

wave. This  would be an average performed by the  measuring process.  

However, our  x-ray d a t a  ind ica t e  t h a t  t he  magnetic e f f e c t s  i n  

equat ions  6.3 - 6.5 a r e  not  present  i n  the  high frequency, s h o r t  

wavelength processes  involved i n  the x-ray measurements. Thus, w e  
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i n f e r  t h a t  t h e  averaging processes  discussed above do not  occur under 

these  condi t ions .  

I f  t h e  averaging i s  due t o  long range ferromagnet ic  i n t e r -  

a c t i o n s  we can conclude t h a t  t he  i n t e r a c t i o n s  do not  respond a t  

these  f requencies .  

I f  t he  averaging i s  over t h e  wavelength of t he  v i b r a t i o n a l  

waves w e  conclude t h a t  random f l u c t u a t i o n s  in composition make the  

average meaningless f o r  very s h o r t  wavelengths. 

In any case, w e  conclude t h a t  our  x-ray d a t a  suppor t  t h e  

p o i n t  of view t h a t ,  al though t h e  magnetic e f f e c t  i n  the  e l a s t i c  

cons t an t s  i s  not due t o  an i n t r i n s i c  con t r ibu t ion  t o  t h e  e las t ic  

energy of t h e  kind propsed by ANS, the concept of some averaged 

magnetic con t r ibu t ion  to t h e  e l a s t i c  energy i s  use fu l  i n  exp la in ing  

t h e i r  u l t r a s o n i c  measurements. 
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SECTION V I 1 1  

SUMMARY 

We have deyeloped a technique f o r  measuring the  i n t e n s i t y  of 

Bragg peaks r e f l e c t e d  from the  f ace  of a l a rge  s i n g l e  c r y s t a l  over 

a range of temperatures from 100°K t o  600OK. 

r e c t i n g  the  measured i n t e n s t i t i e s  f o r  d i f f u s e  s c a t t e r i n g  has been 

developed. 

An expression f o r  cor- 

These techniques have been used on n i c k e l  and i ron-n icke l  

a l l o y s  t o  ob ta in  the  temperature dependence of t he  x-ray Debye 

temperature f o r  t hese  materials. This temperature dependence has 

been compared wi th  the  temperature dependence of t he  Debye temperature 

ca l cu la t ed  from u l t r a s o n i c  e l a s t i c  constant  measurements. I n  the  

case  of t he  a l l o y s  the  d i f f e rence  has been i n t e r p r e t e d  i n  terms of 

the  n a t u r e  of t he  magnetic e f f e c t  i n  the  e l a s t i c  cons tan ts .  

It i s  f e l t  t h a t  t h e r e  a r e  o ther  ma te r i a l s  where meaningful 

comparisons of t h i s  type can be made, This  is e s p e c i a l l y  t r u e  

where the  u l t r a s o n i c  and x-ray measurements can be made on the  same 

sample. Our x-ray techniques a r e  s u i t a b l e  f o r  t h i s  purpose. 
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SECTION I X  

APPENEICIES 

APPENDIX A: Correction f o r  Di f fuse  S c a t t e r i n g  

It has  long been recognized t h a t  t he  thermal motion which 

causes t h e  decrease  i n  Bragg i n t e n s i t i e s  i n  x-ray s c a t t e r i n g  g ives  

r ise  t o  background s c a t t e r i n g  known as the  thermal df f fuse  scat- 

t e r i n g ,  The b a s i s  f o r  an ana lys i s  of t h i s  e f f e c t  has  been given i n  

Sec t ion  111; the  d i f f u s e  s c a t t e r i n g  i s  discussed t h e r e  b r i e f l y .  I n  

equat ion 3,17 I2 can be  thought of as t h e  s c a t t e r i n g  out  of the  Bragg 

peak due t o  the  absorp t ion  o r  emission of one phonon dur ing  the  scat- 

t e r i n g  process ,  This s c a t t e r i n g  produces a d i f f u s e  peak under t h e  

Bragg peak, The h igher  order  terms are due t o  multi-phonon pro- 

cesses  and con t r ibu te  t o  the general background wi th  no s i g n i f i c a n t  

peakingo Therefore ,  w e  will be concerned only wi th  I2 s ince  i t  may 

con t r ibu te  s i g n i f i c a n t l y  t o  the  measured i n t e n s i t y .  I must then 

be sub t r ac t ed  from the  measured i n t e n s i t y  i n  order  t o  ob ta in  t h e  

t r u e  in t eg ra t ed  i n t e n s i t y  0f the  Bragg peak, 

2 

This  con t r ibu t ion  has  been recognized f o r  some t i m e ,  b u t  

oniy r e l a t i v e l y  r ecen t ly  have cor rec t ions  been appl ied  f o r  it. 

Chipman and Paskin (1959) have derived a scheme for cor rec t ing  f o r  

t h i s  e f f e c t  i n  po lgc rys t a l ine  measurements. Nilsson (1957) has 

dernved a method f o r  co r rec t ing  s ing le  c r y s t a l  measurements f o r  an 

m e g a  or moving Z r y s t a P ,  f ixed  counter scan assuming no mosaic spread 

Bn the  c r y s t a l ,  Nei ther  of these were app l i cab le  t o  the  procedures 

used by us ,  Therefore ,  i t  was necessary t o  develop a method f o r  cor- 
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regzting our measmements f o r  d i f fuse  s c a t t e r i n g ,  

The approwimatkons w e  have used are similar t o  those of 

NiPsssn: f i ~ s t  averaging the  s c a t t e r i n g  over a l l  d i r e c t i o n s  i n  re- 

c i p r o c a l  space and t r e a t i n g  the  average isotropfcally; then con- 

s i d e r i n g  t h e  counter window to have infinite height  and al lowing 

rhc background sub t r ac t ion  t o  eompen~ate f o r  the  approximation, 

have, however, improved on his method by aPfowPng f o r  t he  e f f e c t s  

of mosaic spread and beam divergence, 

troduced .a simpler scheme f o r  t h e  directional averaging which w i l l  

a l low easier a n a l y t i c a l  comparfson wi th  the  Debye-Waller f a c t o r ,  

We modify our no ta t ion  of Seetion 111 by us ing  9 i n s t e a d  of 

Then 

We 

I n  add i t ion ,  w e  have in- 

1 to Endicake t h e  scattering p e r  un i t  s o l i d  ang le ,  

A -2 

1s t h e  first order diffuse incer is i tyu 

incer ferenze  fune"ciow Y@$ which is sharp ly  peaked a t  5 = 

now replace  the sumarisn over k by an i n t e g r a t i o n  over k space 

Here we have fntroduced t h e  

We 
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us ing  dN --(#: dk, dk, dk,. We a r e  i n t e r e s t e d  i n  the  va lue  of 

j, a t  a f ixed  va lue  of 

- S. 
t h a t  + k =ha. Therefore,  the  value of G a t  t h i s  va lue  of k 

is t h e  only s i g n i f i c a n t  cont r ibu t ion .  

i n t e r f e r e n c e  func t ion  gives  N(2n) /U so w e  have 

so t h e  i n t e g r a t i o n  i s  performed a t  cons tan t  

The i n t e r f e r e n c e  func t ion  is non-zero only a t  va lues  of k such 

kj 
Thein te8ra t ion  over t he  

3 3  

A-3 

For kT)) 3 5  which is v a l i d  nea r  t he  Bragg peak a t  temperatures 

where the  d i f f u s e  s c a t t e r i n g  i s  s i g n i f i c a n t ,  w e  can w r i t e  from 

equat ion  3.12 

A - 4  

Then in t roducing  the  v e l o c i t y  of the thermal waves 

w e  g e t  

A -5- 
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Then 

A t  t h i s  p o i n t  w e  w i l l  t ake  the  i s o t r o p i c  average by s e t t i n g  

Then u s i n g  

A-6 

A-7 

where p 

i s  t h e  number of atoms p e r  u n i t  cell .  Noting t h a t  M -  -f- we 

can w r i t e  

is t h e  i s o t r o p i c  e l a s t i c  constant  of t he  j t h  mode and Y j 

5- 2/ 

A-9 

This i s  t h e  d i f f u s e  s c a t t e r i n g  i n t o  an elemental  s o l i d  ang le  f o r  a 

given c r y s t a l  s e t t i n g .  

Using an Ewald sphere of  rad ius  B/X, w e  now cons t ruc t  a co- 

o r d i n a t e  system i n  r ec ip roca l  space which is centered  a t  a Bragg 

peak as i l l u s t r a t e d  i n  Figure 10. 

Bragg peak the  co-ordinates represent  angular  motions of t he  d i f -  

f r a c t i o n  apparatus  so  t h a t  d i s tances  i n  r e c i p r o c a l  space a r e  2n/X 

For small d i s t a n c e s  from the  
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Figure 10 

Angular Co-or dinat es R e  l a  t ive 

to the 

Ewald Sphere 



incoming 
beam 

t origin of 
reciprocal space 
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times the  co-ordinated angle. 

As shown i n  Figure 10, y corresponds t o  a r o t a t i o n  of t h e  

c r y s t a l  about t h e  normal t o  the  page such t h a t  y = 2 sinB(W- w0) 

where w is t he  t r u e  angular  ro t a t ion  of t he  c r y s t a l .  

responds t o  t he  usua l  20 motion of a d i f f r ac tomete r  such t h a t  

f cor- 

f’ = (28 - 280)cos8. rl corresponds t o  a counter  r o t a t i o n  o r  t h e  

counter  s l i t  width. 5 is t h e  motion perpendicular  t o  II. The 

d i r e c t i o n  normal t o  the  page is the  X mot;ion of t he  G. E. gon- 

i o s t a t  which corresponds t o  r o t a t i o n  o u t  of t he  plane of d i f -  

f r a c t i o n  o r  t o  the  counter  s l i t  height .  

systems r o t a t e d  about by an angle 0. 

These form two orthogonal 

To ob ta in  the  i n t e n s i t y  of d i f f u s e  s c a t t e r i n g  c o l l e c t e d  a t  

any given counter  s e t t i n g  w e  must i n t e g r a t e  j 

angle  subtended by the  counter window. 

over t he  s o l i d  2 

Simi la r ly  f o r  j1 

A-ll 

However, f o r  a real c r y s t a l  there  is a range of angles  f o r  which a 

c r y s t a l  r e f l e c t s  because of t he  mosaic n a t u r e  of t he  c r y s t a l .  

n e c e s s i t a t e s  t h a t  t he  i n t e n s i t y  scan cover t h i s  range; it a l s o  

means t h a t  t he  d i f f u s e  i n t e n s i t y  a t  a given s e t t i n g  of t he  counter  

This 
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i s  an average over t h i s  range. A s a t i s f a c t o r y  approximation f o r  

t h i s  i s  t o  average i '  2 
f u l l  $ width of t h e  Bragg peak a t  one-half i n t e n s i t y .  

over a s t e p  funct ion whose width,  A e ,  is  t h e  

Using 

2 
k2 = (F) ( I 2  + n2 + 1') t h i s  gives 

where 

4-13 

Thus a t  any given s e t t i n g  t h e  i n t e n s i t y  i s  

A -  14 
where i, 

The t o t a l  count &! f o r  a 28 scan a f t e r  background s u b t r a c t i o n  i s  

i s  a constant  background con t r ibu t ion .  

where fl i s  t h e  angular  v e l o c i t y  of t he  scan and 6(20)  i s  the  range 

of t h e  scan. 

l i m i t s  of i n t e g r a t i o n  may be extended throughout t h e  zone of re- 

c i p r o c a l  space. Then 

The scan s tar ts  and ends where il i s  zero,  so i t s  
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By d iv id ing  the  observed i n t e n s i t y  by 1 + a one then 

o b t a i n s  the  i n t e g r a t e d  count f o r  t h e  Bragg i n t e n s i t y  E,. 
To eva lua te  a we need 

This  can be ca l cu la t ed  i n  one of  t h ree  ways: d i r e c t l y  from t h e  

p o l y c r y s t a l i n e  e l a s t i c  constants-Youngs modulus, E, and the  shea r  

modulus, p; c a l c u l a t e d  from the  s i n g l e  c r y s t a l  e las t ic  cons t an t s ,  by 

t h e  method similar t o  Anderson's (1963); o r  es t imated from some 

knowledge of t h e  Debye temperature. 

e las t ic  cons t an t  d a t a  of ANS and the method of Anderson. 

For our  work w e  used t h e  
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I n t e g r a t i n g  t o  ge t  B we used the  l i m i t s  -- t o  +OD f o r  x; 
= $cos0  - t o  n2 = ?cos0 +AJ f o r  n; and f ,  = f s in0  -a 

2 2 2 O 1  

4-18 

We def ine  

The expression f o r  B i s  numerically in t eg ra t ed  t o  c a l c u l a t e  6. 

The values  of B a t  the  background count ing p o s i t i o n s  are averaged 

i n  order  Po ob ta in  B,,. 

The o the r  f a c t o r s  are s t ra ight forward .  The va lues  of 
8 

f o r  our  work a r e  i l l u s t r a t e d  i n  appendix $ along with o ther  cor- 

r e c t i o n  f a c t o r s .  
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APPENDIX B: Correction f o r  t he  ChanPe 

i n  L a t t i c e  Constant and Numerical Values f o r  t he  To ta l  Correc t ion  

We s h a l l  h e r e  develop the  expressions f o r  t he  minor cor- 

r e c t i o n s  t o  be app l i ed  t o  the  in t eg ra t ed  i n t e n s i t i e s  i n  order  t o  

take  i n t o  account t he  dependence of the  i n t e g r a t e d  i n t e n s i t y  on t h e  

l a t t i ce  parameter due t o  the  change of l a t t i c e  parameter wi th  temp- 

e r a t u r e .  

r e c t i o n  from appendix A w i l l  be i l l u s t r a t e d  i n  d e t a i l  f o r  n i cke l .  

The c o r r e c t i o n s  f o r  t he  o t h e r  samples were obtained by the  same 

procedure and gave similar numerical va lues .  

These co r rec t ions  along with the  d i f f u s e  s c a t t e r i n g  cor- 

The i n t e g r a t e d  i n t e n s i t y  from the  f ace  of a l a r g e  mosaic 

c r y s t a l  is (James, 1954, ch. 2) 

where J i s  t h e  inc iden t  x-ray i n t e n s i t y ,  X i s  t h e  x-ray wave- 

l eng th ,  e i s  t h e  e l e c t r o n i c  charge, c the  v e l o c i t y  of l i g h t ,  me 

i s  t h e  mass of an e l e c t r o n ,  3 i s  t h e  number of atoms pe r  u n i t  

volume, which i s  propor t iona l  t o  l / G 3  where d i s  the  l a t t i ce  

parameter ,p  is t he  l i n e a r  absorpt ion c o e f f i c i e n t  which i s  pro- 

p o r t i o n a l  t o  l / d  '#  f n  is t he  atomic s c a t t e r i n g  f a c t o r  f o r  t h e  n t h  

atom i n  the  u n i t  c e l l  and 8 i s  the  Bragg angle  which i s  r e l a t e d  
0 
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t o  a by 

where h, k and 1 are the Mil ler  indic ies  of the Bragg r e f l e c t i o n .  

If Ad= Q(T) - C7 (TR) i s  small, then 

+ / + c0s22€L It  COS'^^^ 
sin 2e, 

and 

and 

A Q  
4 - - f' E2 - 

Then 

8-4 
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8-5  

which i s  a correction which w i l l  allow us t o  treat  Io as a constant. 

In addit ion there i s  a similar correction i n  the exponent 

2 2 
But A i s  proportional t o  s i n  8 which i s  proportional t o  l/a so 

that 

L 

and 

which i s  a correction which al lows us t o  treat  A as a constant. 
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F i n a l l y ,  applying a l l  t hese  co r rec t ions  p lus  the  d i f f u s e  s c a t t e r i n g  

co r rec t ion  t o  t h e  measured i n t e n s i t i e s  we ge t  

I f  a l l  t hese  c o r r e c t i o n s  a r e  small, as they a r e  i n  our case ,  then 

they can be combined i n t o  a s i n g l e  f a c t o r ,  a + (E + 2AJI) A Q / Q ,  

which r ep resen t s  a f r a c t i o n a l  decrease i n  t h e  measured i n t e n s i t y .  

The c o r r e c t i o n s  f o r  the  change i n  la t t ice  parameter are 

s t r a igh t fo rward  c a l c u l a t i o n s  from a knowledge of f ,  A$, €lo and 

of Q versus  T. The A$ values  can be obtained from the  uncor- 

r ec t ed  experimental  da ta .  For our c a l c u l a t i o n s  the  atomic sca t -  

t e r i n g  f a c t o r s  as ca l cu la t ed  by Freeman and Watson (1961) were 

used. A weighted average of t h e i r  i r o n  and n i c k e l  va lues  was 

used f o r  t he  a l loys .  

To c a l c u l a t e  a we have from appendix A 

R -10 
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The va lue  o f #  was determined from the same elast ic  cons t an t  cal- 

c u l a t i o n s  as were used t o  c a l c u l a t e  the Debye temperatures. Using 

Anderson's (1963) n o t a t i o n  w e  have 

2 For n i c k e l  a t  room temperature # = 2.656 

I n  t h e  case of t h e  (660) peak of n i c k e l  t he  s e p a r a t i o n  of 

cm /dyne. 

t h e  K and K peaks i s  1.14 degrees i n  28. Therefore,  t h e  2 6  

scan was  from an angle below t h e  K 

t h a t  angle  above i t  so t h a t  t he  scan was symetrical with r e s p e c t  

t o  t h e  K and K peaks and the  same u va lue  was app l i cab le  t o  

both peaks. For the  n i c k e l  sample t h e  scan s t a r t e d  1.00 degrees 

below t h e  K peak so t h a t  t he  t o t a l  scan range was 6(26) = 3.14 

degrees. 

a1 a2 
peak t o  1.14 degrees p l u s  

a1 

a1 "2 

a1 

The parameters needed f o r  c a l c u l a t i n g  B are 

ag = / .20 

Then t o  g e t  u we numerically i n t e g r a t e  B between t h e  l i m i t s  

p I = - / ,oo  cos$9O= -A7 
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t o  get 

- .O859 

Then using 

and 

we  have 

and for  room temperature 

The values of@ versus T calculated for the ( 6 6 0 )  peak of nickel 

are shown i n  Figure 11. 

For the (660) peak of nickel 
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Figure 11 

Intensity Correction Parameters 
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Using the observed A$ and A s/a we calculate  the values shown i n  

Figure 11 f o r  the l a t t i c e  parameter corrections.  

two corrections which represents the t o t a l  correction i s  a l s o  

shown i n  Figure 11. 

The sum of  the 
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APPENDIX C: Adjustment of E l a s t i c  Constants  

f o r  Composition Changes 

A s  i nd ica t ed  i n  Sec t ion  V t h e  composition of our  a l l o y s  

w a s  d i f f e r e n t  from t h a t  of t he  a l loy  measured by ANS. To f i n d  the  

appropr ia te  behavior  of t he  e l a s t i c  cons t an t s  of our a l l o y s  i t  i s  

necessary t o  s h i f t  t he  break i n  the s lope  according t o  the  l o c a t i o n  

of t he  Curie temperature f o r  each a l loy .  I n  add i t ion  t h e r e  i s  the  

poss ib l e  composition dependence of t he  s i z e  of the  change iii s l o p .  

The s h i f t  i n  Curie  temperature i s  determined by the  observed l a t t i c e  

parameter versus  temperature curves and i s  accomplished q u i t e  ac- 

cu ra t e ly .  The l a r g e s t  composition change i s  about 2 percent  f o r  

the  33 percent  sample based on the  s h i f t  i n  Curie temperature.  

Avai lable  d a t a  from the  l i t e r a t u r e  are Used t o  show t h a t  the com- 

p o s i t i o n  dependence of t he  magnetic e f f e c t  i s  small i n  t h i s  com- 

p o s i t i o n  range s o  t h a t  t he  s i z e  of t he  change i n  s lope  of B and C '  

i s  q u i t e  j u s t i f i a b l y  kept  constant  f o r  a l l  samples. For C i t  i s  

shown t h a t  t he  observed change i n  s lope  i s  nea r ly  a l l  due t o  the  

change i n  s lope  o f Q  versub T. T h i s  i s  c o n s i s t e n t  with the  mag- 

n e t i c  e f f e c t s  and wi th  the  temperature dependence of C i n  o t h e r  

materials. 

compositions was determined from the  observed 4 versus  T. 

Therefore ,  t h e  change i n  s lope  of C f o r  t he  d i f f e r e n t  

To determine the  s h i f t  i n  Curie  temperatures f o r  each a l l o y  

the  Curie  temperature of our samples were measured by an AC sus- 

c e p t i b i l i t y  method on apparatus  made a v a i l a b l e  t o  us by Car l  
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Rosner of t h e  General Electr ic  Research Laboratory. 

31 and 33 percent  samples the  Curie temperatures are 3 6 7 ,  4 3 8 ,  and 

466"K, r e spec t ive ly .  

compared these  with the  ex t r apo la t ed  i n t e r s e c t i o n  of t h e  4Q/R ver sus  

T curves of Figure 5. The l o c a t i o n  of t hese  i n t e r s e c t i o n s  i s  cer- 

t a i n l y  r e l a t e d  t o  the Curie temperature s i n c e  the  cu rva tu re  of 

t hese  curves i s  due t o  the  magnetic e f f e c t s .  These i n t e r s e c t i o n s  

are 4 5 ,  3 6 ,  and 35 degrees less than t h e  r e spec t ive  Curie temper- 

a t u r e s ,  

This  is about h a l f  way between t h e  29 and 31 percent  samples, so 

w e  est imated t h a t  t he  Curie temperature f o r  t h e i r  sample is 4 1  

degrees  above 365"K, i o e .  406'K. This va lue  i s  lower than t h a t  

es t imated by ANS b u t  i t  is n o t  i n c o n s i s t e n t  w i th  t h e i r  d a t a  and 

should be  w i t h i n  5 degrees of t he  Curie temperature measured by the  

same method as our  a l l o y s .  Since i t  is  t h e  relative change i n  

Curie  temperature i n  which w e  are i n t e r e s t e d ,  t hese  va lues  give a 

good b a s i s  f o r  determining t h i s  s h i f t  i n  Curie temperature. 

For the  29, 

Then using s t r i c t l y  empir ical  arguments, we 

The i n t e r s e c t i o n  of t he  curve f o r  t he  ANS sample i s  365'K. 

There are several experimental i n d i c a t i o n s  which i n d i c a t e  

t h a t  t h e  magnetic e f f e c t s  i n  the  33 percen t  sample are a t  least as 

g r e a t  as i n  t h e  ANS sample. One of t hese  is t he  l a t t i c e  parameter 

ve r sus  temperature d a t a  i n  Figure 5 which shows a g r e a t e r  e f f e c t  i n  

t h e  h ighe r  n i c k e l  a l l o y s .  This e f f e c t  i s  known t o  peak a t  about 36 

p e r c e n t  n i c k e l .  (Masumoto, 1931). Another is t he  Youngs modulus 

d a t a  of GuilPaume (1920) which shows a broad maximum i n  the  pos- 

i t i v e  E ve r sus  T s lope  a t  compositions centered about 35 percent  
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n i c k e l ,  The i s o t r o p i c  shear  modulus appears t o  behave i n  a s i m -  

i l a r  way. (Clark,  19621, Thus, i t  seems t o  be a reasonably con- 

s e r v a t i v e  estimate t o  assume t h e  same s i z e  magnetic e f f e c t  f o r  B 

and C '  i n  t he  31 and 33 percent  samples as i n  t h e  ANS sample. 

i s  somewhat l i b e r a l  t o  assume the same th ing  f o r  t he  29 percent  

sample, However, t h i s  sample plays a minor r o l e ,  For t h e  e f f e c t  

on the  e l a s t i c  cons tan t  C a more exact estimate of t he  composition 

e f f e c t  can be made, This is due t o  the small s i z e  of t he  ex- 

p l i c i t l y  magnetic e f f e c t  in its temperature dependence. The change 

I t  

i n  s lope  i s  seen t o  be much less than i n  B and C' and can nea r ly  

a l l  be a t t r i b u t e d  t o  t he  change i n  slope i n  l a t t i c e  parameter 

versue temperature,  To d o  t h i s  w e  use 

where v i s  the  spec i f  ic volume , 

c u l a t e  - from t h e  l i n e a r  po r t ion  o f  t he  curve above the  Curie 

temperature and use t h i s  and measured va lues  of Bala versus  temper- 

a t u r e  i n  

I f  w e  make - i ~  = 0 then w e  can cal- 

aw 

A S  3 -  C = r  f -  dC 
3 0  a -0 c- 2 

t o  cons t ruc t  a C versus  T curve,  This n e a r l y  co inc ides  with t h a t  

measured by ANS.  

t h e o r e t i c a l  grounds (Huntington, 1958, p. 3301, Moreover, using 

ac 
The assumption that  .E= 0 is j u s t i f i e d  on 
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c-3 

and t h e  d a t a  given by Huntington (1958, pp. 274, 322, 324) t o  cal- 

c u l a t e  - w e  f i n d  t h a t  i t  i s  zero within experimental  e r r o r  f o r  ac 
aT 

most of t h e  materials f o r  which adequate d a t a  are a v a i l a b l e .  

Thus, i t  seep8 j u s t i f i a b l e  t o  use the procedure des- 

c r ibed  above t o  c a l c u l a t e  C versus  T on the b a s i s  of t h e  measured 

Q U l a  yer sus  T of our a l l o y s .  
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APPENDIX D: Model f o r  Introducinv Frequency Dependent 

Elast ic  Constants i n t o  the Debve-Waller Factor .  

To o b t a i n  a q u a l i t a t i v e  p i c t u r e  of how frequency dependent 

e l a s t i c  cons t an t s  would e f f e c t  t h e  Debye-Waller f a c t o r  and through 

i t  the  experimentally determined x-ray Debye temperature, w e  in- 

troduce a simple model f o r  t h i s  frequency dependence. 

i t a t i v e  p i c t u r e  should no t  be s e n s i t i v e  t o  t h e  d e t a i l s  of t h e  model. 

The qual- 

I n  Figure 1 2  i s  shown t h e  frequency ve r sus  wave v e c t o r  f o r  

our model. Up t o  some wave v e c t o r  k t h e r e  i s  a constant  phase vel-  

o c i t y ,  V1, which is equal  t o  the  group v e l o c i t y .  A t  l a r g e r  wave 

v e c t o r s  t h e r e  is  a d i f f e r e n t  phase v e l o c i t y ,  V2, which i s  equal  t o  

t h e  group v e l o c i t y  i n  t h a t  range. The frequencies  w; and y de- 

f i n e d  by t h e  f i g u r e  are seen t o  be r e l a t e d  by 

Using equat ion 3.21 from Sect ion 111 w e  obtain t h i s  model 

which gives  
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I 
Figure 12 

Dispersion Curve 
for 

Modified Debye Model 
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Insert ing t h i s  i n  equation 3 .22  w e  have 

0- 3 

where using procedures s imi lar  t o  Section 111 

which g ives  
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fo l lowing  Sec t ion  111. We have introduced a parameter f def ined  by 

o2 = FO, n 

which i s  a measure of where the  change i n  e l a s t i c  cons t an t s  occur 

r e l a t i v e  t o  the  cu to f f  frequency. The experimental  Debye temp- 

e r a t u r e  i n  t h i s  model i s  then defined by 

L 

Applying t h i s  t o  the  i ron-n icke l  a l loys  we make @ , z f q  

9 
s t a n t s  when t h e  magnetic e f f e c t s  are included; then 

and @,,: @ I  

from the  e l a s t i c  cons tan ts  when the magnetic a f f e c t s  a r e  absent .  

where 

is t h e  Debye temperature ca l cu la t ed  from the  e l a s t i c  con- 

aZ= F q  
where @ I  is the  Debye temperature c a l c u l a t e d  

The v a l u e  of @, w a s  then ca lcu la ted  by t h i s  method over  t h e  

temperature  range of i n t e r e s t  f o r  s eve ra l  va lues  of f .  The re- 

s u l t s  are shown i n  Figure 13, 
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Figure 13  

Debye Temperature. Versus Temperature 

for the Modified Debye Model 

Applied to the  33 Percent  N i c k e l  A l loy  
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APPENDIX E: A l t e rna te  Form of the  DGring Term 

From t h e  d e f i n i t i o n  of t h e  bulk modulus B w e  have f o r  

cons t an t  magnetization, I, 

E - l  

where v i s  s p e c i f i c  volume, p i s  pressure and u i s  magnetization 

p e r  un . i t  mass. A t  constant  f i e l d ,  H,  

But we can write 

Combining equat ions E-1 through E-3, w e  ge t  

We can write 

E - 2  

E - 3  

E - 4  

E -  5 

Solvfng t h i s  €o r  and s u b s t i t u t i n g  i n t o  equation E-4, w e  g e t  ar 
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L 

E - 6  

where a i s  t h e  c o e f f i c i e n t  of l i n e a r  expansion of t he  ferromagnetic 

m a t e r i a l  and a,, i s  the  c o e f f i c i e n t  of l i n e a r  expansion i n  the  

absence of ferromagnetism. 

Using 

E-7 

from ANS data .  Also from t h e i r  paper 

-5 I 
C "  m - me = - 1 . 2  (lo) - 

a t  room temperature. 

above the  Curie temperature. 

(1961), we estimate 

The value of a. used was t h e i r  a observed 

From the  d a t a  of Kouvel and Wilson 

so 
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Using the data of ANS w e  get  

2 -12 E - 1 - -  - - 2  (10) dyne 1 

Bex t rap o 1 a t  ed Bobserved 

Thus, i t  i s  reasonable t o  attribute the magnetic e f f e c t s  i n  B t o  

the Daring term. 
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APPENDIX F: Calcu la t ion  of Debye Temperatures 

from E l a s t i c  Constants 

I n  our  n o t a t i o n  the  Debye temperature i n  the  Debye approx- 

imat ion i s  given by 

F- I 

which fol lows from equat ion 3.23. Here Vw i s  the  i s o t r o p i c  

average v e l o c i t y  of t he  v i b r a t i o n a l  waves. We l e t  

where ,Q i s  the  dens i ty  and rt, 

given by 

is an average e l a s t i c  cons tan t  

F- 3 

f o r  the  x-ray Debye temperature.  

a t u r e  involves  a d i f f e r e n t  average over t he  long i tud ina l  and t r ans -  

ve r se  e l a s t i c  cons tan ts . )  Following Anderson (0. L. Anderson, 1963) 

we use 

(The s p e c i f i c  hea t  Debye temper- 

F- 4 
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and 

where the R and V subscripts refer  t o  the Reuss and Voight iso- 

tropic  averages of the e l a s t i c  constants (Huntington, 1958, p .  

317) given by 

C’ c 

F-6 

F- 8 

f o r  cubic crys ta l s .  
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